Normal form backward induction for decision trees with coherent lower previsions
Nathan Huntley () and
Matthias Troffaes ()
Annals of Operations Research, 2012, vol. 195, issue 1, 134 pages
Abstract:
We examine normal form solutions of decision trees under typical choice functions induced by lower previsions. For large trees, finding such solutions is hard as very many strategies must be considered. In an earlier paper, we extended backward induction to arbitrary choice functions, yielding far more efficient solutions, and we identified simple necessary and sufficient conditions for this to work. In this paper, we show that backward induction works for maximality and E-admissibility, but not for interval dominance and Γ-maximin. We also show that, in some situations, a computationally cheap approximation of a choice function can be used, even if the approximation violates the conditions for backward induction; for instance, interval dominance with backward induction will yield at least all maximal normal form solutions. Copyright Springer Science+Business Media, LLC 2012
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://hdl.handle.net/10.1007/s10479-011-0968-2 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:annopr:v:195:y:2012:i:1:p:111-134:10.1007/s10479-011-0968-2
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10479
DOI: 10.1007/s10479-011-0968-2
Access Statistics for this article
Annals of Operations Research is currently edited by Endre Boros
More articles in Annals of Operations Research from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().