A discrete dynamic convexized method for the max-cut problem
Geng Lin and
Wenxing Zhu ()
Annals of Operations Research, 2012, vol. 196, issue 1, 390 pages
Abstract:
The max-cut problem is a classical NP-hard problem in graph theory. In this paper, we adopt a local search method, called MCFM, which is a simple modification of the Fiduccia-Mattheyses heuristic method in Fiduccia and Mattheyses (Proc. ACM/IEEE DAC, pp. 175–181, 1982 ) for the circuit partitioning problem in very large scale integration of circuits and systems. The method uses much less computational cost than general local search methods. Then, an auxiliary function is presented which has the same global maximizers as the max-cut problem. We show that maximization of the function using MCFM can escape successfully from previously converged discrete local maximizers by taking increasing values of a parameter. An algorithm is proposed for the max-cut problem, by maximizing the auxiliary function using MCFM from random initial solutions. Computational experiments were conducted on three sets of standard test instances from the literature. Experimental results show that the proposed algorithm is effective for the three sets of standard test instances. Copyright Springer Science+Business Media, LLC 2012
Keywords: Max-cut problem; Local search; Dynamic convexized method (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1007/s10479-012-1133-2 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:annopr:v:196:y:2012:i:1:p:371-390:10.1007/s10479-012-1133-2
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10479
DOI: 10.1007/s10479-012-1133-2
Access Statistics for this article
Annals of Operations Research is currently edited by Endre Boros
More articles in Annals of Operations Research from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().