Pattern definition of the p-efficiency concept
Miguel Lejeune ()
Annals of Operations Research, 2012, vol. 200, issue 1, 23-36
Abstract:
This study revisits the celebrated p-efficiency concept introduced by Prékopa (Z. Oper. Res. 34:441–461, 1990 ) and defines a p-efficient point (pLEP) as a combinatorial pattern. The new definition uses elements from the combinatorial pattern recognition field and is based on the combinatorial pattern framework for stochastic programming problems proposed in Lejeune (Stochastic programming e-print series (SPEPS) 2010-5, 2010 ). The approach is based on the binarization of the probability distribution, and the generation of a consistent partially defined Boolean function representing the combination (F,p) of the binarized probability distribution F and the enforced probability level p. A combinatorial pattern provides a compact representation of the defining characteristics of a pLEP and opens the door to new methods for the generation of pLEPs. We show that a combinatorial pattern representing a pLEP constitutes a strong and prime pattern and we derive it through the solution of an integer programming problem. Next, we demonstrate that the (finite) collection of pLEPs can be represented as a disjunctive normal form (DNF). We propose a mixed-integer programming formulation allowing for the construction of the DNF that is shown to be prime and irreducible. We illustrate the proposed method on a problem studied by Prékopa (Stochastic programming: handbook in operations research and management science, vol. 10, Elsevier, Amsterdam, 2003 ). Copyright Springer Science+Business Media, LLC 2012
Keywords: A. Prékopa (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://hdl.handle.net/10.1007/s10479-010-0803-1 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:annopr:v:200:y:2012:i:1:p:23-36:10.1007/s10479-010-0803-1
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10479
DOI: 10.1007/s10479-010-0803-1
Access Statistics for this article
Annals of Operations Research is currently edited by Endre Boros
More articles in Annals of Operations Research from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().