Depth-first heuristic search for the job shop scheduling problem
Carlos Mencía (),
María Sierra () and
Ramiro Varela ()
Annals of Operations Research, 2013, vol. 206, issue 1, 265-296
Abstract:
We evaluate two variants of depth-first search algorithms and consider the classic job shop scheduling problem as a test bed. The first one is the well-known branch-and-bound algorithm proposed by P. Brucker et al. which uses a single chronological backtracking strategy. The second is a variant that uses partially informed depth-first search strategy instead. Both algorithms use the same heuristic estimation; in the first case, it is only used for pruning states that cannot improve the incumbent solution, whereas in the second it is also used to sort the successors of an expanded state. We also propose and analyze a new heuristic estimation which is more informed and more time consuming than that used by Brucker’s algorithm. We conducted an experimental study over well-known instances showing that the proposed partially informed depth-first search algorithm outperforms the original Brucker’s algorithm. Copyright Springer Science+Business Media New York 2013
Keywords: Heuristic search; Depth-first search; Constraint propagation; Scheduling (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1007/s10479-012-1296-x (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:annopr:v:206:y:2013:i:1:p:265-296:10.1007/s10479-012-1296-x
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10479
DOI: 10.1007/s10479-012-1296-x
Access Statistics for this article
Annals of Operations Research is currently edited by Endre Boros
More articles in Annals of Operations Research from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().