EconPapers    
Economics at your fingertips  
 

Application of robust optimization to automated test assembly

Bernard Veldkamp ()

Annals of Operations Research, 2013, vol. 206, issue 1, 595-610

Abstract: In automated test assembly (ATA), 0-1 linear programming (0-1 LP) methods are applied to select questions (items) from an item bank to assemble an optimal test. The objective in this 0-1 LP optimization problem is to assemble a test that measures, in as precise a way as possible, the ability of candidates. Item response theory (IRT) is commonly applied to model the relationship between the responses of candidates and their ability level. Parameters that describe the characteristics of each item, such as difficulty level and the extent to which an item differentiates between more and less able test takers (discrimination) are estimated in the application of the IRT model. Unfortunately, since all parameters in IRT models have to be estimated, they do have a level of uncertainty to them. Some of the other parameters in the test assembly model, such as average response times, have been estimated with uncertainty as well. General 0-1 LP methods do not take this uncertainty into account, and overestimate the predicted level of measurement precision. In this paper, alternative robust optimization methods are applied. It is demonstrated how the Bertsimas and Sim method can be applied to take this uncertainty into account in ATA. The impact of applying this method is illustrated in two numerical examples. Implications are discussed, and some directions for future research are presented. Copyright Springer Science+Business Media, LLC 2013

Keywords: Automated test assembly; Mixed integer programming; Parameter uncertainty; Robust optimization (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1007/s10479-012-1218-y (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:annopr:v:206:y:2013:i:1:p:595-610:10.1007/s10479-012-1218-y

Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10479

DOI: 10.1007/s10479-012-1218-y

Access Statistics for this article

Annals of Operations Research is currently edited by Endre Boros

More articles in Annals of Operations Research from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:annopr:v:206:y:2013:i:1:p:595-610:10.1007/s10479-012-1218-y