Approximability results for the resource-constrained project scheduling problem with a single type of resources
Evgeny Gafarov (),
Alexander Lazarev and
Frank Werner ()
Annals of Operations Research, 2014, vol. 213, issue 1, 115-130
Abstract:
In this paper, we consider the well-known resource-constrained project scheduling problem. We give some arguments that already a special case of this problem with a single type of resources is not approximable in polynomial time with an approximation ratio bounded by a constant. We prove that there exist instances for which the optimal makespan values for the non-preemptive and the preemptive problems have a ratio of O(logn), where n is the number of jobs. This means that there exist instances for which the lower bound of Mingozzi et al. has a bad relative error of O(logn), and the calculation of this bound is an NP-hard problem. In addition, we give a proof that there exists a type of instances for which known approximation algorithms with polynomial time complexity have an approximation ratio of at least equal to $O(\sqrt{n})$ , and known lower bounds have a relative error of at least equal to O(logn). This type of instances corresponds to the single machine parallel-batch scheduling problem 1|p−batch,b=∞|C max . Copyright Springer Science+Business Media, LLC 2014
Keywords: Project scheduling; Makespan; Lower bounds; Upper bounds (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1007/s10479-012-1106-5 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:annopr:v:213:y:2014:i:1:p:115-130:10.1007/s10479-012-1106-5
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10479
DOI: 10.1007/s10479-012-1106-5
Access Statistics for this article
Annals of Operations Research is currently edited by Endre Boros
More articles in Annals of Operations Research from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().