Robust support vector machines for multiple instance learning
Mohammad Poursaeidi () and
O. Kundakcioglu ()
Annals of Operations Research, 2014, vol. 216, issue 1, 205-227
Abstract:
This paper presents the multiple instance classification problem that can be used for drug and molecular activity prediction, text categorization, image annotation, and object recognition. In order to model a more robust representation of outliers, hard margin loss formulations that minimize the number of misclassified instances are proposed. Although the problem is $\mathcal{NP}$ -hard, computational studies show that medium sized problems can be solved to optimality in reasonable time using integer programming and constraint programming formulations. A three-phase heuristic algorithm is proposed for larger problems. Furthermore, different loss functions such as hinge loss, ramp loss, and hard margin loss are empirically compared in the context of multiple instance classification. The proposed heuristic and robust support vector machines with hard margin loss demonstrate superior generalization performance compared to other approaches for multiple instance learning. Copyright Springer Science+Business Media New York 2014
Keywords: Support vector machines; Multiple instance learning; Constraint programming; Robust classification (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://hdl.handle.net/10.1007/s10479-012-1241-z (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:annopr:v:216:y:2014:i:1:p:205-227:10.1007/s10479-012-1241-z
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10479
DOI: 10.1007/s10479-012-1241-z
Access Statistics for this article
Annals of Operations Research is currently edited by Endre Boros
More articles in Annals of Operations Research from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().