Efficient computer experiment-based optimization through variable selection
Dachuan Shih,
Seoung Kim (),
Victoria Chen (),
Jay Rosenberger and
Venkata Pilla
Annals of Operations Research, 2014, vol. 216, issue 1, 287-305
Abstract:
A computer experiment-based optimization approach employs design of experiments and statistical modeling to represent a complex objective function that can only be evaluated pointwise by running a computer model. In large-scale applications, the number of variables is huge, and direct use of computer experiments would require an exceedingly large experimental design and, consequently, significant computational effort. If a large portion of the variables have little impact on the objective, then there is a need to eliminate these before performing the complete set of computer experiments. This is a variable selection task. The ideal variable selection method for this task should handle unknown nonlinear structure, should be computationally fast, and would be conducted after a small number of computer experiment runs, likely fewer runs (N) than the number of variables (P). Conventional variable selection techniques are based on assumed linear model forms and cannot be applied in this “large P and small N” problem. In this paper, we present a framework that adds a variable selection step prior to computer experiment-based optimization, and we consider data mining methods, using principal components analysis and multiple testing based on false discovery rate, that are appropriate for our variable selection task. An airline fleet assignment case study is used to illustrate our approach. Copyright Springer Science+Business Media, LLC 2014
Keywords: Computer experiments; False discovery rate; Large-scale optimization; Regression trees; Variable selection (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://hdl.handle.net/10.1007/s10479-012-1129-y (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:annopr:v:216:y:2014:i:1:p:287-305:10.1007/s10479-012-1129-y
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10479
DOI: 10.1007/s10479-012-1129-y
Access Statistics for this article
Annals of Operations Research is currently edited by Endre Boros
More articles in Annals of Operations Research from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().