A single interval based classifier
Heeyoung Kim (),
Xiaoming Huo () and
Jianjun Shi ()
Annals of Operations Research, 2014, vol. 216, issue 1, 307-325
Abstract:
In many applications, it is desirable to build a classifier that is bounded within an interval. Our motivating example is rooted in monitoring in a stamping process. A novel approach is proposed and examined in this paper. Our method consists of three stages: (1) A baseline of each class is estimated via convex optimization; (2) An “optimal interval” that maximizes the difference among the baselines is identified; (3) A classifier that is based on the “optimal interval” is constructed. We analyze the implementation strategy and properties of the derived algorithm. The derived classifier is named an interval based classifier (IBC) and can be computed via a low-order-of-complexity algorithm. Comparing to existing state-of-the-art classifiers, we illustrate the advantages of our approach. To showcase its usage in applications, we apply the IBC to a set of tonnage curves from stamping processes, and observed superior performance. This method can help identifying faulty situations in manufacturing. The computational steps of IBC take advantage of operations-research methodology. IBC can serve as a general data mining tool, when the features are based on single intervals. Copyright Springer Science+Business Media, LLC 2014
Keywords: Admissible length; Convex optimization; Interval based classifier; Support vector classifier (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1007/s10479-011-0886-3 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:annopr:v:216:y:2014:i:1:p:307-325:10.1007/s10479-011-0886-3
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10479
DOI: 10.1007/s10479-011-0886-3
Access Statistics for this article
Annals of Operations Research is currently edited by Endre Boros
More articles in Annals of Operations Research from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().