Identifying distress among banks prior to a major crisis using non-oriented super-SBM
Necmi Avkiran () and
Lin Cai
Annals of Operations Research, 2014, vol. 217, issue 1, 53 pages
Abstract:
We illustrate how data envelopment analysis (DEA) can be used as a forward-looking method to flag bank holding companies (BHCs) likely to become distressed. Various financial performance models are tested in the period leading up to the recent global financial crisis. Results generally support DEA’s discriminatory and predictive power, suggesting that it can identify distressed banks up to 2 years in advance. Robustness tests reveal that DEA has a stable efficient frontier and its discriminatory and predictive powers prevail even after data perturbations. DEA can be used as a preliminary off-site screening tool by regulators, by business managers to ascertain their standing among competitors, and by investors. Attention by regulators can be further directed at potentially distressed banks as some of them would be candidates for closer monitoring. In conclusion, DEA may be useful in making economic decisions because there is an identifiable link between inefficiency and financial distress. To the best of our knowledge, application of DEA to predict financial distress among BHCs prior to a major crisis has not been published. Copyright Springer Science+Business Media New York 2014
Keywords: Data envelopment analysis; Distress prediction; Bank holding companies; Financial crisis; C67; C21 (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://hdl.handle.net/10.1007/s10479-014-1568-8 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:annopr:v:217:y:2014:i:1:p:31-53:10.1007/s10479-014-1568-8
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10479
DOI: 10.1007/s10479-014-1568-8
Access Statistics for this article
Annals of Operations Research is currently edited by Endre Boros
More articles in Annals of Operations Research from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().