EconPapers    
Economics at your fingertips  
 

The stochastic opportunistic replacement problem, part II: a two-stage solution approach

Michael Patriksson (), Ann-Brith Strömberg () and Adam Wojciechowski ()

Annals of Operations Research, 2015, vol. 224, issue 1, 75 pages

Abstract: In Almgren et al. (The opportunistic replacement problem: analysis and case studies, preprint, Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, Göteborg, Sweden, 2011 ) we studied the opportunistic replacement problem, which is a multi-component maintenance scheduling problem with deterministic component lives. The assumption of deterministic lives is a substantial simplification, but valid in applications where critical components are assigned a technical life after which replacement is enforced. Here, we study the stochastic opportunistic replacement problem, which is a more general setting in which component lives are allowed to be stochastic. We consider a stochastic programming approach for the minimization of the expected cost over the remaining planning horizon. Further, we present a means to compute lower bounds on the recourse function. The lower bounds are used in the construction of a decomposition method which extends the integer L-shaped decomposition method to incorporate stronger optimality cuts. In order to obtain a computationally tractable model, a two-stage sample average approximation scheme is utilized. Numerical experiments on problem instances from the wind power and aviation industry as well as on two test instances are performed. The results show that the decomposition method is faster than solving the deterministic equivalent on all four instances considered. Furthermore, the numerical experiments show that decisions based on the stochastic programming approach compared with simpler maintenance policies yield maintenance decisions with a significantly lower expected total maintenance cost on two out of the four instances tested, and an equivalent maintenance cost compared to the best policy on the remaining two instances. Copyright Springer Science+Business Media, LLC 2015

Keywords: Stochastic programming; Maintenance optimization (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://hdl.handle.net/10.1007/s10479-012-1134-1 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:annopr:v:224:y:2015:i:1:p:51-75:10.1007/s10479-012-1134-1

Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10479

DOI: 10.1007/s10479-012-1134-1

Access Statistics for this article

Annals of Operations Research is currently edited by Endre Boros

More articles in Annals of Operations Research from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:annopr:v:224:y:2015:i:1:p:51-75:10.1007/s10479-012-1134-1