A new strongly competitive group testing algorithm with small sequentiality
Yongxi Cheng (),
Ding-Zhu Du () and
Feifeng Zheng ()
Annals of Operations Research, 2015, vol. 229, issue 1, 265-286
Abstract:
In many fault detection problems, we want to identify all defective items from a sample set of items using the minimum number of tests. Group testing is for the scenario where each test is performed on a subset of items, and tells whether the subset contains at least one defective item or not. In practice, the number of defective items in the sample set is usually unknown. In this paper, we investigate new algorithms for the group testing problem with unknown number of defective items. We consider the scenario where the performance of a group testing algorithm is measured by two criteria: the primary criterion is the number of tests performed, which measures the total cost spent; and the secondary criterion is the number of stages the algorithm works in, which is referred to as the sequentiality of the algorithm in this paper and measures the minimum amount of time required by using the algorithm to identify all the defective items. We present a new algorithm Recursive Binary Splitting (RBS) for the above group testing problem with unknown number of defective items, and prove an upper bound on the number of tests required by RBS. The computational results show that RBS exhibits very good practical performance, measured in terms of both the above two criteria. Copyright Springer Science+Business Media New York 2015
Keywords: Fault detection; Group testing; Algorithms; Sequentiality (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1007/s10479-014-1766-4 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:annopr:v:229:y:2015:i:1:p:265-286:10.1007/s10479-014-1766-4
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10479
DOI: 10.1007/s10479-014-1766-4
Access Statistics for this article
Annals of Operations Research is currently edited by Endre Boros
More articles in Annals of Operations Research from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().