A simulation scenario based mixed integer programming approach to airline reserve crew scheduling under uncertainty
Christopher Bayliss (),
Geert Maere (),
Jason A. D. Atkin () and
Marc Paelinck ()
Additional contact information
Christopher Bayliss: ASAP, University of Southampton
Geert Maere: ASAP, University of Southampton
Jason A. D. Atkin: ASAP, University of Southampton
Marc Paelinck: KLM Royal Dutch Airlines
Annals of Operations Research, 2017, vol. 252, issue 2, No 7, 335-363
Abstract:
Abstract The environment in which airlines operate is uncertain for many reasons, for example due to the effects of weather, traffic or crew unavailability (due to delay or sickness). This work focuses on airline reserve crew scheduling under crew absence uncertainty and delay for an airline operating a single hub and spoke network. Reserve crew can be used to cover absent crew or delayed connecting crew. A fixed number of reserve crew are available for scheduling and each requires a daily standby duty start time. This work proposes a mixed integer programming approach to scheduling the airline’s reserve crew. A simulation of the airline’s operations with stochastic journey time and crew absence inputs (without reserve crew) is used to generate input disruption scenarios for the mixed integer programming simulation scenario model (MIPSSM) formulation. Each disruption scenario corresponds to a record of all of the disruptions that may occur on the day of operation which are solvable by using reserve crew. A set of disruption scenarios form the input of the MIPSSM formulation, which has the objective of finding the reserve crew schedule that minimises the overall level of disruption over the set of input scenarios. Additionally, modifications of the MIPSSM are explored, a heuristic solution approach and a reserve use policy derived from the MIPSSM are introduced. A heuristic based on the proposed MIPSSM outperforms a range of alternative approaches. The heuristic solution approach suggests that including the right disruption scenarios is as important as the quantity of disruption scenarios that are added to the MIPSSM. An investigation into what makes a good set of scenarios is also presented.
Keywords: Airline reserve crew scheduling; Simulation; Mixed integer programming (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://link.springer.com/10.1007/s10479-016-2174-8 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:annopr:v:252:y:2017:i:2:d:10.1007_s10479-016-2174-8
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10479
DOI: 10.1007/s10479-016-2174-8
Access Statistics for this article
Annals of Operations Research is currently edited by Endre Boros
More articles in Annals of Operations Research from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().