On the median in imprecise ordinal problems
Sébastien Destercke ()
Additional contact information
Sébastien Destercke: Université de Technologie de Compiegne
Annals of Operations Research, 2017, vol. 256, issue 2, No 11, 375-392
Abstract:
Abstract When having to make a prediction under probabilistic uncertainty in ordinal problems, the median offers a number of interesting properties compared to other statistics such as the expected value. In particular, it does not depend on a particular metric defined over the elements, but still takes account of the ordinal nature of the data. It can also be shown to be the minimizer of the $$L_1$$ L 1 loss function. In this paper, we show that similar results can be obtained when the uncertainty is described not by a single probability distribution, but by a convex set of those. In particular, we relate the lower and upper medians to the $$L_1$$ L 1 loss function via the notion of lower and upper expectations (and extend these results to general quantiles). We also show that, using a different decision rule, the lower and upper median can be retrieved when assuming the cost to be strictly monotonic and symmetric, and nothing more. Finally, we run some tests to show the interest of using Median based predictions with convex sets of probabilities in ordinal regression problems.
Keywords: Ordinal space; Ordinal classification; Ordinal regression; Imprecise probabilities; Median; Sign-desirability (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s10479-016-2253-x Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:annopr:v:256:y:2017:i:2:d:10.1007_s10479-016-2253-x
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10479
DOI: 10.1007/s10479-016-2253-x
Access Statistics for this article
Annals of Operations Research is currently edited by Endre Boros
More articles in Annals of Operations Research from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().