Structure preserving integration and model order reduction of skew-gradient reaction–diffusion systems
Bülent Karasözen (),
Tuğba Küçükseyhan and
Murat Uzunca
Additional contact information
Bülent Karasözen: Middle East Technical University
Tuğba Küçükseyhan: Middle East Technical University
Murat Uzunca: Middle East Technical University
Annals of Operations Research, 2017, vol. 258, issue 1, No 5, 79-106
Abstract:
Abstract Activator-inhibitor FitzHugh–Nagumo (FHN) equation is an example for reaction–diffusion equations with skew-gradient structure. We discretize the FHN equation using symmetric interior penalty discontinuous Galerkin (SIPG) method in space and average vector field (AVF) method in time. The AVF method is a geometric integrator, i.e. it preserves the energy of the Hamiltonian systems and energy dissipation of the gradient systems. In this work, we show that the fully discrete energy of the FHN equation satisfies the mini-maximizer property of the continuous energy for the skew-gradient systems. We present numerical results with traveling fronts and pulses for one dimensional, two coupled FHN equations and three coupled FHN equations with one activator and two inhibitors in skew-gradient form. Turing patterns are computed for fully discretized two dimensional FHN equation in the form of spots and labyrinths. Because the computation of the Turing patterns is time consuming for different parameters, we applied model order reduction with the proper orthogonal decomposition (POD). The nonlinear term in the reduced equations is computed using the discrete empirical interpolation (DEIM) with SIPG discretization. Due to the local nature of the discontinuous Galerkin method, the nonlinear terms can be computed more efficiently than for the continuous finite elements. The reduced solutions are very close to the fully discretized ones. The efficiency and accuracy of the POD and POD–DEIM reduced solutions are shown for the labyrinth-like patterns.
Keywords: FitzHugh–Nagumo equations; Gradient systems; Traveling fronts and pulses; Turing patterns; Energy preservation; Discontinuous Galerkin; Model order reduction; Discrete empirical interpolation; 35K57; 65M60; 35B36 (search for similar items in EconPapers)
Date: 2017
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://link.springer.com/10.1007/s10479-015-2063-6 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:annopr:v:258:y:2017:i:1:d:10.1007_s10479-015-2063-6
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10479
DOI: 10.1007/s10479-015-2063-6
Access Statistics for this article
Annals of Operations Research is currently edited by Endre Boros
More articles in Annals of Operations Research from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().