Totally model-free actor-critic recurrent neural-network reinforcement learning in non-Markovian domains
Eiji Mizutani () and
Stuart Dreyfus
Additional contact information
Eiji Mizutani: National Taiwan University of Science and Technology
Stuart Dreyfus: University of California at Berkeley
Annals of Operations Research, 2017, vol. 258, issue 1, No 6, 107-131
Abstract:
Abstract For solving a sequential decision-making problem in a non-Markovian domain, standard dynamic programming (DP) requires a complete mathematical model; hence, a totally model-based approach. By contrast, this paper describes a totally model-free approach by actor-critic reinforcement learning with recurrent neural networks. The recurrent connections (or context units) in neural networks act as an implicit form of internal state (i.e., history memory) for developing sensitivity to hidden non-Markovian dependencies, rendering the process Markovian implicitly and automatically in a totally model-free fashion. That is, the model-free recurrent-network agent neither learns transitional probabilities and associated rewards, nor by how much the state space should be enlarged so that the Markov property holds. For concreteness, we illustrate time-lagged path problems, in which our learning agent is expected to learn a best (history-dependent) policy that maximizes the total return, the sum of one-step transitional rewards plus special “bonus” values dependent on prior transitions or decisions. Since we can obtain an optimal solution by model-based DP, this is an excellent test on the learning agent for understanding its model-free learning behavior. Such actor-critic recurrent-network learning might constitute a mechanism which animal brains use when experientially acquiring skilled action. Given a concrete non-Markovian problem example, the goal of this paper is to show the conceptual merit of totally model-free learning with actor-critic recurrent networks, compared with classical DP (and other model-building procedures), rather than pursue a best recurrent-network learning strategy.
Keywords: Actor-critic reinforcement learning; Recurrent neural networks; Non-Markovian dependencies (search for similar items in EconPapers)
Date: 2017
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://link.springer.com/10.1007/s10479-016-2366-2 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:annopr:v:258:y:2017:i:1:d:10.1007_s10479-016-2366-2
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10479
DOI: 10.1007/s10479-016-2366-2
Access Statistics for this article
Annals of Operations Research is currently edited by Endre Boros
More articles in Annals of Operations Research from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().