Recovering all generalized order-preserving submatrices: new exact formulations and algorithms
Andrew C. Trapp (),
Chao Li and
Patrick Flaherty
Additional contact information
Andrew C. Trapp: Worcester Polytechnic Institute
Chao Li: Worcester Polytechnic Institute
Patrick Flaherty: University of Massachusetts
Annals of Operations Research, 2018, vol. 263, issue 1, No 18, 385-404
Abstract:
Abstract Cluster analysis of gene expression data is a popular and successful way of elucidating underlying biological processes. Typically, cluster analysis methods seek to group genes that are differentially expressed across experimental conditions. However, real biological processes often involve only a subset of genes and are activated in only a subset of environmental or temporal conditions. To address this limitation, Ben-Dor et al. (J Comput Biol 10(3–4):373–384, 2003) developed an approach to identify order-preserving submatrices (OPSMs) in which the expression levels of included genes induce the sample linear ordering of experiments. In addition to gene expression analysis, OPSMs have application to recommender systems and target marketing. While the problem of finding the largest OPSM is $${{\mathscr {N}}}{{\mathscr {P}}}$$ N P -hard, there have been significant advances in both exact and approximate algorithms in recent years. Building upon these developments, we provide two exact mathematical programming formulations that generalize the OPSM formulation by allowing for the reverse linear ordering, known as the generalized OPSM pattern, or GOPSM. Our formulations incorporate a constraint that provides a margin of safety against detecting spurious GOPSMs. Finally, we provide two novel algorithms to recover, for any given level of significance, all GOPSMs from a given data matrix, by iteratively solving mathematical programming formulations to global optimality. We demonstrate the computational performance and accuracy of our algorithms on real gene expression data sets showing the capability of our developments.
Keywords: Order-preserving submatrix; Integer programming; Data mining; Biclustering (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s10479-016-2173-9 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:annopr:v:263:y:2018:i:1:d:10.1007_s10479-016-2173-9
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10479
DOI: 10.1007/s10479-016-2173-9
Access Statistics for this article
Annals of Operations Research is currently edited by Endre Boros
More articles in Annals of Operations Research from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().