DEA as a tool for auditing: application to Chinese manufacturing industry with parallel network structures
Yande Gong,
Joe Zhu (),
Ya Chen () and
Wade D. Cook
Additional contact information
Yande Gong: Nanjing Audit University
Joe Zhu: Worcester Polytechnic Institute
Wade D. Cook: York University
Annals of Operations Research, 2018, vol. 263, issue 1, No 13, 247-269
Abstract:
Abstract Performing a high-quality manufacturing audit can be time consuming and costly given the large number and scale of manufacturing firms and enterprises. Chinese economy has experienced some rapid and significant growth over the past 30 years, which is largely due to contributions from the development of manufacturing industry. Auditing tools are very much needed in auditing the Chinese manufacturing industry. Data envelopment analysis (DEA) has been used as an auditing tool in selecting audit objects that are treated as decision making units (DMUs). These DMUs are characterized by a set of performance measures. DEA then uses data on these performance measures to identify potential audit objects. However, conventional DEA treat each DMU or system as a “black-box” and does not take the operations of individual components within the “black-box” into consideration. For example, a large number of firms or enterprises exist in a manufacturing industry. When the conventional DEA is applied to the industries, the performance of the firms is often ignored. This paper proposes a new parallel DEA model where each input/output of the system is not the sum of those of all its components. Such a situation arises from the need of auditing firms or enterprises in Chinese manufacturing industries. For example, the cost margin of a particular industry may not equal to the sum of that of all its component firms within the industry because this metric is measured in percentage. The proposed approach is applied to the manufacturing industry of China.
Keywords: Data envelopment analysis (DEA); Parallel systems; Effciency; Manufacturing industry; Auditing; Performance (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://link.springer.com/10.1007/s10479-016-2197-1 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:annopr:v:263:y:2018:i:1:d:10.1007_s10479-016-2197-1
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10479
DOI: 10.1007/s10479-016-2197-1
Access Statistics for this article
Annals of Operations Research is currently edited by Endre Boros
More articles in Annals of Operations Research from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().