EconPapers    
Economics at your fingertips  
 

Distant diversity in dynamic class prediction

Şenay Yaşar Sağlam () and W. Nick Street ()
Additional contact information
Şenay Yaşar Sağlam: Ministry of Business, Innovation, and Employment
W. Nick Street: University of Iowa

Annals of Operations Research, 2018, vol. 263, issue 1, No 2, 5-19

Abstract: Abstract Instead of using the same ensemble for all data instances, recent studies have focused on dynamic ensembles in which a new ensemble is chosen from a pool of classifiers for each new data instance. Classifiers agreement in the region where a new data instance resides in has been considered as a major factor in dynamic ensembles. We postulate that the classifiers chosen for a dynamic ensemble should behave similarly in the region in which the new instance resides, but differently outside of this area. In other words, we hypothesize that high local accuracy, combined with high diversity in other regions, is desirable. To verify the validity of this hypothesis we propose two approaches. The first approach focuses on finding the k-nearest data instances to the new instance, which then defines a neighborhood, and maximizes simultaneously local accuracy and distant diversity, based on data instances outside of the neighborhood. The second method makes use of an alternative definition of the neighborhood: all data instances are in the neighborhood. However, the importance of data instances for accuracy and diversity depends on the distance to the new instance. We demonstrate through several experiments that the distance-based diversity and accuracy outperform all benchmark methods.

Keywords: Dynamic ensemble; Classification; Diversity; Local accuracy (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://link.springer.com/10.1007/s10479-016-2328-8 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:annopr:v:263:y:2018:i:1:d:10.1007_s10479-016-2328-8

Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10479

DOI: 10.1007/s10479-016-2328-8

Access Statistics for this article

Annals of Operations Research is currently edited by Endre Boros

More articles in Annals of Operations Research from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:annopr:v:263:y:2018:i:1:d:10.1007_s10479-016-2328-8