Angle-based twin support vector machine
Reshma Khemchandani (),
Pooja Saigal () and
Suresh Chandra ()
Additional contact information
Reshma Khemchandani: South Asian University
Pooja Saigal: South Asian University
Suresh Chandra: Indian Institute of Technology, Delhi
Annals of Operations Research, 2018, vol. 269, issue 1, No 19, 387-417
Abstract:
Abstract In this paper, a novel nonparallel hyperplane based classifier termed as “angle-based twin support vector machine” (ATWSVM) has been proposed which is motivated by the concept of twin support vector machine (TWSVM). TWSVM obtains two nonparallel hyperplanes by solving a pair of quadratic programming problems (QPPs). ATWSVM presents a generic classification model, where the first problem can be formulated using a TWSVM-based classifier and the second problem is an unconstrained minimization problem (UMP) which is reduced to solving a system of linear equations. The second hyperplane is determined so that it is proximal to its own class and the angle between the normals to the two hyperplanes is maximized. The notion of angle has been introduced to have maximum separation between the two hyperplanes. In this work, we have presented two versions of ATWSVM: one that solves a QPP and a UMP; second which formulates both the problems as UMPs. The training time of ATWSVM is much less than that of TWSVM because ATWSVM solves the second problem as UMP instead of QPP. To test the efficacy of the proposed classifier, experiments have been conducted on synthetic and benchmark datasets and it is observed that the proposed classifier achieves classification accuracy comparable or better than that of TWSVM. This work also proposes application of ATWSVM for color image segmentation.
Keywords: Angle-based twin support vector machine; Supervised learning; Unconstrained minimization problem (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://link.springer.com/10.1007/s10479-017-2604-2 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:annopr:v:269:y:2018:i:1:d:10.1007_s10479-017-2604-2
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10479
DOI: 10.1007/s10479-017-2604-2
Access Statistics for this article
Annals of Operations Research is currently edited by Endre Boros
More articles in Annals of Operations Research from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().