EconPapers    
Economics at your fingertips  
 

Distribution network design with big data: model and analysis

Gang Wang (), Angappa Gunasekaran and Eric W. T. Ngai
Additional contact information
Gang Wang: University of Massachusetts Dartmouth
Angappa Gunasekaran: University of Massachusetts Dartmouth
Eric W. T. Ngai: The Hong Kong Polytechnic University

Annals of Operations Research, 2018, vol. 270, issue 1, No 27, 539-551

Abstract: Abstract This study addresses the problem of locating distribution centers in a single-echelon, capacitated distribution network. Such network consists of several potential distribution centers and various demand points dispersed in different regional markets. The distribution operations of this network generate massive amounts of data. The problem is how to utilize big data generated to identify the right number of distribution centers to open and the right assignment of customers to opened distribution centers while minimizing the total handling and operation costs of distribution centers, transportation, and penalty. Restrictions on both network capacity and single sourcing strategy are also considered. This study formulates this problem as mixed-integer nonlinear program. The effects of different scenarios on distribution-center locations as demand, the operation costs of distribution centers and outbound transportation, and the number of customers are analyzed through simulation on randomly generated big datasets. Empirical results indicate that the model presented is appropriate and robust. The operational value of big data in the distribution network design is revealed through a case study in which several design alternatives are evaluated.

Keywords: Big data; Capacitated network design; Service levels; Mixed-integer nonlinear programming; Simulation (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
http://link.springer.com/10.1007/s10479-016-2263-8 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:annopr:v:270:y:2018:i:1:d:10.1007_s10479-016-2263-8

Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10479

DOI: 10.1007/s10479-016-2263-8

Access Statistics for this article

Annals of Operations Research is currently edited by Endre Boros

More articles in Annals of Operations Research from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:annopr:v:270:y:2018:i:1:d:10.1007_s10479-016-2263-8