EconPapers    
Economics at your fingertips  
 

Big data-driven fuzzy cognitive map for prioritising IT service procurement in the public sector

Youngseok Choi, Habin Lee () and Zahir Irani
Additional contact information
Youngseok Choi: Brunel University London
Habin Lee: Brunel University London
Zahir Irani: Brunel University London

Annals of Operations Research, 2018, vol. 270, issue 1, No 6, 75-104

Abstract: Abstract The prevalence of big data is starting to spread across the public and private sectors however, an impediment to its widespread adoption orientates around a lack of appropriate big data analytics (BDA) and resulting skills to exploit the full potential of big data availability. In this paper, we propose a novel BDA to contribute towards this void, using a fuzzy cognitive map (FCM) approach that will enhance decision-making thus prioritising IT service procurement in the public sector. This is achieved through the development of decision models that capture the strengths of both data analytics and the established intuitive qualitative approach. By taking advantages of both data analytics and FCM, the proposed approach captures the strength of data-driven decision-making and intuitive model-driven decision modelling. This approach is then validated through a decision-making case regarding IT service procurement in public sector, which is the fundamental step of IT infrastructure supply for publics in a regional government in the Russia federation. The analysis result for the given decision-making problem is then evaluated by decision makers and e-government expertise to confirm the applicability of the proposed BDA. In doing so, demonstrating the value of this approach in contributing towards robust public decision-making regarding IT service procurement.

Keywords: Big data analytics; Fuzzy cognitive map; Decision modelling; IT service procurement; Simulation (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)

Downloads: (external link)
http://link.springer.com/10.1007/s10479-016-2281-6 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:annopr:v:270:y:2018:i:1:d:10.1007_s10479-016-2281-6

Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10479

DOI: 10.1007/s10479-016-2281-6

Access Statistics for this article

Annals of Operations Research is currently edited by Endre Boros

More articles in Annals of Operations Research from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:annopr:v:270:y:2018:i:1:d:10.1007_s10479-016-2281-6