EconPapers    
Economics at your fingertips  
 

A cloud based job sequencing with sequence-dependent setup for sheet metal manufacturing

Yashar Ahmadov and Petri Helo ()
Additional contact information
Yashar Ahmadov: University of Vaasa
Petri Helo: University of Vaasa

Annals of Operations Research, 2018, vol. 270, issue 1, No 2, 5-24

Abstract: Abstract This paper presents a prototype system of sheet metal processing machinery which collects production order data, passes current information to cloud based centralized job scheduling for setup time reduction and updates the production calendar accordingly. A centralized cloud service can collect and analyse production order data for machines and suggest optimized schedules. This paper explores the application of sequencing algorithms in the sheet metal forming industry, which faces sequence-dependent changeover times on single machine systems. We analyse the effectiveness of using such algorithms in the reduction of total setup times. We describe alternative models: Clustering, Nearest Neighbourhood and Travelling Salesman Problem, and then apply them to real data obtained from a manufacturing company, as well as to randomly generated data sets. Based on the prototype implementation clustering algorithm was proposed for actual implementation. Sequence-dependency increases the complexity of the scheduling problems; thus, effective approaches are required to solve them. The algorithms proposed in this paper provide efficient solutions to these types of sequencing problems.

Keywords: Big data analytics; Sequence-dependent setup; Heuristics; Job scheduling (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://link.springer.com/10.1007/s10479-016-2304-3 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:annopr:v:270:y:2018:i:1:d:10.1007_s10479-016-2304-3

Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10479

DOI: 10.1007/s10479-016-2304-3

Access Statistics for this article

Annals of Operations Research is currently edited by Endre Boros

More articles in Annals of Operations Research from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:annopr:v:270:y:2018:i:1:d:10.1007_s10479-016-2304-3