A framework for investigating optimization of service parts performance with big data
Christopher A. Boone,
Benjamin T. Hazen (),
Joseph B. Skipper and
Robert E. Overstreet
Additional contact information
Christopher A. Boone: Texas Christian University
Benjamin T. Hazen: Air Force Institute of Technology
Joseph B. Skipper: Abraham Baldwin Agricultural College
Robert E. Overstreet: Iowa State University
Annals of Operations Research, 2018, vol. 270, issue 1, No 5, 65-74
Abstract:
Abstract As national economies continue to evolve across the globe, businesses are increasing their capacity to not only generate new products and deliver them to customers, but also to increase levels of after-sales service. One major component of after-sale service involves service parts management. However, service parts businesses are typically seen as add-ons to existing business models, and are not well integrated with primary businesses. Consequently, many service parts operations are managed using ad-hoc practices that are often subordinated to primary businesses. Early research in this area has been instrumental in assisting organizations to begin optimizing some aspects of service parts management. However, performance goals for service parts management are often ill-defined. Further, because these service parts businesses are often subordinated to primary businesses within a firm, the use of newer big data applications to help manage these processes is almost completely absent. Herein, we develop a framework that seeks to define service parts performance goals for the purpose of outlining where scholars and practitioners can further examine where, how, and why big data applications can be employed to enhance service parts management performance.
Keywords: Service parts; Big data; Supply chain management; Operations management (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s10479-016-2314-1 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:annopr:v:270:y:2018:i:1:d:10.1007_s10479-016-2314-1
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10479
DOI: 10.1007/s10479-016-2314-1
Access Statistics for this article
Annals of Operations Research is currently edited by Endre Boros
More articles in Annals of Operations Research from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().