Cold chain configuration design: location-allocation decision-making using coordination, value deterioration, and big data approximation
Adarsh Kumar Singh (),
Nachiappan Subramanian (),
Kulwant Singh Pawar () and
Ruibin Bai ()
Additional contact information
Adarsh Kumar Singh: The University of Nottingham Ningbo China
Nachiappan Subramanian: University of Sussex
Kulwant Singh Pawar: The University of Nottingham
Ruibin Bai: The University of Nottingham Ningbo China
Annals of Operations Research, 2018, vol. 270, issue 1, No 22, 433-457
Abstract:
Abstract The study proposes a cold chain location-allocation configuration decision model for shippers and customers by considering value deterioration and coordination by using big data approximation. Value deterioration is assessed in terms of limited shelf life, opportunity cost, and units of product transportation. In this study, a customer can be defined as a member of any cold chain, such as cold warehouse stores, retailers, and last mile service providers. Each customer only manages products that are in a certain stage of the product life cycle, which is referred to as the expected shelf life. Because of the geographical dispersion of customers and their unpredictable demands as well as the varying shelf life of products, complexity is another challenge in a cold chain. Improved coordination between shippers and customers is expected to reduce this complexity, and this is introduced in the model as a longitudinal factor for service distance requirement. We use big data information that reflects geospatial attributes of location to derive the real feasible distance between shippers and customers. We formulate the cold chain location-allocation decision problem as a mixed integer linear programming problem, which is solved using the CPLEX solver. The proposed decision model increases efficiency, adequately equates supply and demand, and reduces wastage. Our study encourages managers to ship full truck load consignments, to be aware of uneven allocation based on proximity, and to supervise heterogeneous product allocation according to storage requirements.
Keywords: Location-allocation problem; Cold chain configuration; Coordination; Big data (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)
Downloads: (external link)
http://link.springer.com/10.1007/s10479-016-2332-z Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:annopr:v:270:y:2018:i:1:d:10.1007_s10479-016-2332-z
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10479
DOI: 10.1007/s10479-016-2332-z
Access Statistics for this article
Annals of Operations Research is currently edited by Endre Boros
More articles in Annals of Operations Research from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().