EconPapers    
Economics at your fingertips  
 

Random expected utility theory with a continuum of prizes

Wei Ma ()
Additional contact information
Wei Ma: Xi’an Jiaotong-Liverpool University

Annals of Operations Research, 2018, vol. 271, issue 2, No 20, 787-809

Abstract: Abstract This note generalizes Gul and Pesendorfer’s random expected utility theory, a stochastic reformulation of von Neumann–Morgenstern expected utility theory for lotteries over a finite set of prizes, to the circumstances with a continuum of prizes. Let [0, M] denote this continuum of prizes; assume that each utility function is continuous, let $$C_0[0,M]$$ C 0 [ 0 , M ] be the set of all utility functions which vanish at the origin, and define a random utility function to be a finitely additive probability measure on $$C_0[0,M]$$ C 0 [ 0 , M ] (associated with an appropriate algebra). It is shown here that a random choice rule is mixture continuous, monotone, linear, and extreme if, and only if, the random choice rule maximizes some regular random utility function. To obtain countable additivity of the random utility function, we further restrict our consideration to those utility functions that are continuously differentiable on [0, M] and vanish at zero. With this restriction, it is shown that a random choice rule is continuous, monotone, linear, and extreme if, and only if, it maximizes some regular, countably additive random utility function. This generalization enables us to make a discussion of risk aversion in the framework of random expected utility theory.

Keywords: Expected utility; Random utility; Random choice; Independence axiom; Risk aversion (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://link.springer.com/10.1007/s10479-018-2914-z Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:annopr:v:271:y:2018:i:2:d:10.1007_s10479-018-2914-z

Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10479

DOI: 10.1007/s10479-018-2914-z

Access Statistics for this article

Annals of Operations Research is currently edited by Endre Boros

More articles in Annals of Operations Research from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:annopr:v:271:y:2018:i:2:d:10.1007_s10479-018-2914-z