Traffic equilibrium with a continuously distributed bound on travel weights: the rise of range anxiety and mental account
Chi Xie (),
Xing Wu () and
Stephen Boyles ()
Additional contact information
Chi Xie: Tongji University
Xing Wu: Lamar University
Stephen Boyles: University of Texas at Austin
Annals of Operations Research, 2019, vol. 273, issue 1, No 11, 279-310
Abstract:
Abstract A new traffic network equilibrium problem with continuously distributed bounds on path weights is introduced in this paper, as an emerging modeling tool for evaluating traffic networks in which the route choice behavior of individual motorists is subject to some physical or psychological upper limit of a travel weight. Such a problem may arise from at least two traffic network instances. First, in a traffic network serving electric vehicles, the driving range of these vehicles is subject to a distance constraint formed by onboard battery capacities and electricity consumption rates as well as network-wide battery-recharging opportunities, which cause the range anxiety issue in the driving population. Second, in a tolled traffic network, while drivers take into account both travel time and road toll in their route choice decisions, many of them implicitly or explicitly set a budget constraint in their mental account for toll expense, subject to their own income levels and other personal and household socio-economic factors. In both cases, we model the upper limit of the path travel weight (i.e., distance or toll) as a continuously distributed stochastic parameter across the driving population, to reflect the diverse heterogeneity of vehicle- and/or motorist-related travel characteristics. For characterizing this weight-constrained network equilibrium problem, we proposed a convex programming model with a finite number of constraints, on the basis of a newly introduced path flow variable named interval path flow rate. We also analyzed the problem’s optimality conditions for the case of path distance limits, and studied the existence of optimal tolls for the case of path toll limits. A linear approximation algorithm was further developed for this complex network equilibrium problem, which encapsulates an efficient weight-constrained k-minimum time path search procedure to perform the network loading. Numerical results obtained from conducting quantitative analyses on example networks clearly illustrate the applicability of the modeling and solution methods for the proposed problem and reveal the mechanism of stochastic weight limits reshaping the network equilibrium.
Keywords: Traffic assignment with side constraints; Network equilibrium; Stochastic weight limit; Electric vehicles; Range anxiety; Road tolls; Mental account (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://link.springer.com/10.1007/s10479-018-2990-0 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:annopr:v:273:y:2019:i:1:d:10.1007_s10479-018-2990-0
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10479
DOI: 10.1007/s10479-018-2990-0
Access Statistics for this article
Annals of Operations Research is currently edited by Endre Boros
More articles in Annals of Operations Research from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().