Optimally configuring a measurement system to detect diversions from a nuclear fuel cycle
Benjamin L. Johnson (),
Aaron T. Porter (),
Jeffrey C. King () and
Alexandra M. Newman ()
Additional contact information
Benjamin L. Johnson: Colorado School of Mines
Aaron T. Porter: Colorado School of Mines
Jeffrey C. King: Colorado School of Mines
Alexandra M. Newman: Colorado School of Mines
Annals of Operations Research, 2019, vol. 275, issue 2, No 7, 393-420
Abstract:
Abstract The civilian nuclear fuel cycle is an industrial process that produces electrical power from the nuclear fission of uranium. Using a measurement system to accurately account for possibly dangerous nuclear material, such as uranium, in a fuel cycle is important because of its possible loss or diversion. A measurement system is defined by a set of measurement methods, or “devices,” used to account for material flows and inventory values at specific locations at facilities in the fuel cycle. We develop a simulation-optimization algorithm and an integer-programming model to find the best, or near-best, resource-limited measurement system with a high degree of confidence. The simulation-optimization algorithm minimizes a weighted sum of false positive and false negative diversion-detection probabilities while accounting for material quantities and measurement errors across a finite, discrete time horizon in hypothetical non-diversion and diversion contexts. In each time period, the estimated cumulative material unaccounted for is compared to a fixed or an optimized threshold value to assess if a “significant amount of material” is lost from a measurement system. The integer-programming model minimizes the population variance of the estimated material loss, i.e., material unaccounted for, in a measurement system. We analyze three potential problems in nuclear fuel cycle measurement systems: (i) given location-dependent device precisions, find the configuration of n devices at n locations ( $$n=3$$ n = 3 ) that provides the lowest corresponding objective values using the simulation-optimization algorithm and integer-programming model, (ii) find the location at which improving device precision reduces objective values the most using the simulation-optimization algorithm (given the device accuracy is 100%), and (iii) determine the effect of measurement frequency on measurement system configurations and objective values using the simulation-optimization algorithm. We obtain comparable results for each problem at least an order of magnitude faster than existing methods do. Using an optimized, rather than a fixed, detection threshold in the simulation-optimization algorithm reduces the weighted sum of false positive and false negative probabilities.
Keywords: Integer programming; Simulation optimization; Resource allocation; Nuclear safeguards (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s10479-018-2940-x Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:annopr:v:275:y:2019:i:2:d:10.1007_s10479-018-2940-x
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10479
DOI: 10.1007/s10479-018-2940-x
Access Statistics for this article
Annals of Operations Research is currently edited by Endre Boros
More articles in Annals of Operations Research from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().