Economics at your fingertips  

Approximate solutions for expanding search games on general networks

Steve Alpern () and Thomas Lidbetter ()
Additional contact information
Steve Alpern: University of Warwick
Thomas Lidbetter: Rutgers Business School

Annals of Operations Research, 2019, vol. 275, issue 2, 259-279

Abstract: Abstract We study the classical problem introduced by R. Isaacs and S. Gal of minimizing the time to find a hidden point H on a network Q moving from a known starting point. Rather than adopting the traditional continuous unit speed path paradigm, we use the dynamic “expanding search” paradigm recently introduced by the authors. Here the regions S(t) that have been searched by time t are increasing from the starting point and have total length t. Roughly speaking the search follows a sequence of arcs $$a_i$$ a i such that each one starts at some point of an earlier one. This type of search is often carried out by real life search teams in the hunt for missing persons, escaped convicts, terrorists or lost airplanes. The paper which introduced this type of search solved the adversarial problem (where H is hidden to maximize the time to be found) for the cases where Q is a tree or is 2-arc-connected. This paper’s main contribution is to give two strategy classes which can be used on any network and have expected search times which are within a factor close to 1 of the value of the game (minimax search time). These strategies classes are respectively optimal for trees and 2-arc-connected networks. We also solve the game for circle-and-spike networks, which can be considered as the simplest class of networks for which a solution was previously unknown.

Keywords: Search games; Zero-sum games; Networks; Defense and security (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: Track citations by RSS feed

Downloads: (external link) Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link:

Ordering information: This journal article can be ordered from

Access Statistics for this article

Annals of Operations Research is currently edited by Endre Boros

More articles in Annals of Operations Research from Springer
Bibliographic data for series maintained by Sonal Shukla ().

Page updated 2019-05-21
Handle: RePEc:spr:annopr:v:275:y:2019:i:2:d:10.1007_s10479-018-2966-0