Staff assignment policies for a mass casualty event queuing network
Emmett J. Lodree (),
Nezih Altay () and
Robert A. Cook
Additional contact information
Emmett J. Lodree: The University of Alabama
Nezih Altay: Depaul University
Robert A. Cook: The University of Alabama
Annals of Operations Research, 2019, vol. 283, issue 1, No 18, 442 pages
Abstract:
Abstract We study parallel queuing systems in which heterogeneous teams collaborate to serve queues with three different prioritization levels in the context of a mass casualty event. We assume that the health condition of casualties deteriorate as time passes and aim to minimize total deprivation cost in the system. Servers (i.e. doctors and nurses) have random arrival rates and they are assigned to a queue as soon as they arrive. While nurses and doctors serve their dedicated queues, collaborative teams of doctors and nurses serve a third type of customer, the patients in critical condition. We model this queueing network with flexible resources as a discrete-time finite horizon stochastic dynamic programming problem and develop heuristic policies for it. Our results indicate that the standard $$c \mu $$cμ rule is not an optimal policy, and that the most effective heuristic policy found in our simulation study is intuitive and has a simple structure: assign doctor/nurse teams to clear the critical patient queue with a buffer of extra teams to anticipate future critical patients, and allocate the remaining servers among the other two queues.
Keywords: Humanitarian logistics; Medical emergency; Stochastic dynamic programming; Monte Carlo simulation (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://link.springer.com/10.1007/s10479-017-2635-8 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:annopr:v:283:y:2019:i:1:d:10.1007_s10479-017-2635-8
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10479
DOI: 10.1007/s10479-017-2635-8
Access Statistics for this article
Annals of Operations Research is currently edited by Endre Boros
More articles in Annals of Operations Research from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().