A two-stage approach for the critical chain project rescheduling
Yan Zhao (),
Nanfang Cui () and
Wendi Tian ()
Additional contact information
Yan Zhao: Zhongnan University of Economics and Law
Nanfang Cui: Huazhong University of Science and Technology
Wendi Tian: Wuhan Textile University
Annals of Operations Research, 2020, vol. 285, issue 1, No 4, 67-95
Abstract:
Abstract The fundamental principle of critical chain project management is to use the critical chain instead of a traditional critical path, to insert a project buffer at the end of the project and to insert feeding buffers wherever non-critical chains join the critical chain to protect a timely project completion. Due to the complexity of project, inserting feeding buffers may cause a conflict, such as precedence conflict or resource conflict, which can be solved by rescheduling. However, after rescheduling some new problems may arise: non-critical chain may start earlier than critical chain (non-critical chain overflow), or a gap may occur between activities on the critical chain (critical chain break-down). This paper is aiming to solve these new problems by a two-stage approach combined with feeding buffer for rescheduling. In the first stage, a first-stage rescheduling based on priority rules together with a backward-recursive procedure is proposed for rescheduling to solve resource and precedence conflicts, resulting in a critical chain break-down or a non-critical chain overflow. In the second stage, a second-stage rescheduling based on a heuristic algorithm is proposed to eliminate new problems and generate a better rescheduling scheme. Finally, we do simulations on the 110 Patterson instances set to verify the feasibility, effectiveness and applicability of our two-stage approach for rescheduling. Simulation results show that, it is an effective approach to generate reliable rescheduling schemes in most projects with excellent performances, i.e. the average project length, timely project completion probability and etc.
Keywords: Critical chain rescheduling; Feeding buffer; Critical chain break-down; Non-critical chain overflow (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://link.springer.com/10.1007/s10479-019-03347-3 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:annopr:v:285:y:2020:i:1:d:10.1007_s10479-019-03347-3
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10479
DOI: 10.1007/s10479-019-03347-3
Access Statistics for this article
Annals of Operations Research is currently edited by Endre Boros
More articles in Annals of Operations Research from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().