Parameterized games of perfect information
János Flesch () and
Arkadi Predtetchinski
Additional contact information
János Flesch: Maastricht University
Annals of Operations Research, 2020, vol. 287, issue 2, No 7, 683-699
Abstract:
Abstract Considered are perfect information games with a Borel measurable payoff function that is parameterized by points of a Polish space. The existence domain of such a parameterized game is the set of parameters for which the game admits a subgame perfect equilibrium. We show that the existence domain of a parameterized stopping game is a Borel set. In general, however, the existence domain of a parameterized game need not be Borel, or even an analytic or co-analytic set. We show that the family of existence domains coincides with the family of game projections of Borel sets. Consequently, we obtain an upper bound on the set-theoretic complexity of the existence domains, and show that the bound is tight.
Keywords: Perfect information games; Subgame perfect equilibrium; Parameterized games; Game projection (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://link.springer.com/10.1007/s10479-018-3087-5 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:annopr:v:287:y:2020:i:2:d:10.1007_s10479-018-3087-5
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10479
DOI: 10.1007/s10479-018-3087-5
Access Statistics for this article
Annals of Operations Research is currently edited by Endre Boros
More articles in Annals of Operations Research from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().