Stability, efficiency, and contentedness of social storage networks
Pramod C. Mane (),
Kapil Ahuja () and
Nagarajan Krishnamurthy ()
Additional contact information
Pramod C. Mane: Indian Institute of Technology Indore
Kapil Ahuja: Indian Institute of Technology Indore
Nagarajan Krishnamurthy: Indian Institute of Management Indore
Annals of Operations Research, 2020, vol. 287, issue 2, No 15, 842 pages
Abstract:
Abstract Social storage systems are a good alternative to existing data backup systems of local, centralized, and P2P backup. Till date, researchers have mostly focussed on either building such systems by using existing underlying social networks (exogenously built) or on studying quality of service related issues. In this paper, we look at two untouched aspects of social storage systems. One aspect involves modelling social storage as an endogenous social network, where agents themselves decide with whom they want to build data backup relation, which is more intuitive than exogenous social networks. The second aspect involves studying the stability of social storage systems, which would help reduce maintenance costs and further, help build efficient as well as contented networks. We have a four fold contribution that covers the above two aspects. We, first, model the social storage system as a strategic network formation game. We define the utility of each agent in the network under two different frameworks, one where the cost to add and maintain links is considered in the utility function and the other where budget constraints are considered. In the context of social storage and social cloud computing, these utility functions are the first of its kind, and we use them to define and analyse the social storage network game. Second, we propose the concept of bilateral stability which refines the pairwise stability concept defined by Jackson and Wolinsky (J Econ Theory 71(1):44–74, 1996), by requiring mutual consent for both addition and deletion of links, as compared to mutual consent just for link addition. Mutual consent for link deletion is especially important in the social storage setting. The notion of bilateral stability subsumes the bilateral equilibrium definition of Goyal and Vega-Redondo (J Econ Theory 137(1):460–492, 2007). Third, we prove necessary and the sufficient conditions for bilateral stability of social storage networks. For symmetric social storage networks, we prove that there exists a unique neighborhood size, independent of the number of agents (for all non-trivial cases), where no pair of agents has any incentive to increase or decrease their neighborhood size. We call this neighborhood size as the stability point. Fourth, given the number of agents and other parameters, we discuss which bilaterally stable networks would evolve and also discuss which of these stable networks are efficient—that is, stable networks with maximum sum of utilities of all agents. We also discuss ways to build contented networks, where each agent achieves the maximum possible utility.
Keywords: Social storage; Endogenous network formation; Bilateral stability; Pairwise stability; F2F backup system; Peer-to-peer system (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://link.springer.com/10.1007/s10479-019-03309-9 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:annopr:v:287:y:2020:i:2:d:10.1007_s10479-019-03309-9
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10479
DOI: 10.1007/s10479-019-03309-9
Access Statistics for this article
Annals of Operations Research is currently edited by Endre Boros
More articles in Annals of Operations Research from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().