EconPapers    
Economics at your fingertips  
 

Measuring short-term risk of initial public offering of equity securities: a hybrid Bayesian and Data-Envelopment-Analysis-based approach

Shabnam Sorkhi () and Joseph C. Paradi ()
Additional contact information
Shabnam Sorkhi: University of Toronto
Joseph C. Paradi: University of Toronto

Annals of Operations Research, 2020, vol. 288, issue 2, No 9, 733-753

Abstract: Abstract This paper offers a methodology to estimate an unconditional probability density function (PDF) for the stock price of an initial public offering (IPO), at a short-term post-IPO horizon. The resultant PDF is unique to the IPO of interest (IPOI) and serves to model the short-term post-market uncertainty associated with its price. Such a methodology is unprecedented in the IPO risk literature since the ex ante quantification of the short-term uncertainty associated with the stock price of a newly public firm was viewed as burdened by the lack of sufficient accounting and market history at the IPO stage. This gap is addressed here through recognizing that common in most IPO cases are the scarcity of hard data and abundance of soft data (strong prior belief), and that one can combine Bayesian inference and Data Envelopment Analysis (DEA) to develop a unique risk quantification setting that befits and serves these two characteristics of IPOs. In this setting, DEA serves to quantify the prior belief, to be subsequently updated in the Bayesian phase. This paper remains the first of its kind which unravels the IPO risk analysis from such perspective. It develops an iterative process that uses DEA to design a multi-dimensional similarity metric to find the ‘comparables’ to IPOI, and thereof the closest comparable to it, whereupon Bayesian inference is employed to utilize the information available from these comparables to sequentially update and revise the IPOI’s prior PDF. The validity of the proposed risk methodology was examined by backtesting analyses.

Keywords: Data Envelopment Analysis; Initial public offerings; Bayesian; Financial risk; Investment decision processes (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://link.springer.com/10.1007/s10479-019-03439-0 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:annopr:v:288:y:2020:i:2:d:10.1007_s10479-019-03439-0

Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10479

DOI: 10.1007/s10479-019-03439-0

Access Statistics for this article

Annals of Operations Research is currently edited by Endre Boros

More articles in Annals of Operations Research from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:annopr:v:288:y:2020:i:2:d:10.1007_s10479-019-03439-0