Sustainable dynamic cellular facility layout: a solution approach using simulated annealing-based meta-heuristic
Kuldeep Lamba (),
Ravi Kumar (),
Shraddha Mishra () and
Shubhangini Rajput ()
Additional contact information
Kuldeep Lamba: Birla Institute of Management Technology
Ravi Kumar: NTPC School of Business
Shraddha Mishra: Indian Institute of Technology Delhi
Shubhangini Rajput: Indian Institute of Technology Delhi
Annals of Operations Research, 2020, vol. 290, issue 1, No 2, 5-26
Abstract:
Abstract The fiercely competitive business environment may require the manufacturing layouts to be modified across the entire planning horizon owing to addition or deletion of new/existing products, machines or processes. The existing layout may not be appropriate for the next time periods as product combination and part demand tend to vary under multi-time scenario. Also the increased awareness of environmental concerns and paucity of vital resources like electric energy has led organizations to rethink about their manufacturing strategies and design layouts which are both cost effective as well as environmentally sustainable. An appropriately planned layout not only helps in reduction of material handling distance but can also greatly contribute to enhancement of the energy efficiency of manufacturing systems and contribute to resource productivity and sustainable value creation. To address these issues in the facility layout design, this paper models a dynamic cellular facility layout problem incorporating the sustainability aspect by considering the minimization of net electric energy consumption along with material handling and rearrangement costs. The model presented in this work is a mixed integer non-linear program. The model aims to minimize the aggregated cost of overall material handling for both the inter and intra-cell movements simultaneously. Additionally the model also minimizes the net electrical energy consumption across the entire time horizon. Twenty five data sets corresponding to varying combinations of machines, time periods and cells have been taken from extant literature to validate the proposed model. LINGO 10 optimization software has been used to solve the proposed model. However, due to NP-Hard nature of cellular facility layout problem, the proposed model is computationally difficult to be solved in reasonable time using LINGO 10, particularly, for layouts pertaining to larger dimensions. To overcome these complexities, a meta-heuristic based on simulated annealing (SA) is also employed to solve the model. It is discerned from the experimental results that LINGO is not able to optimally solve the model whereas the SA optimally solves the model for larger dimensions as well in reasonable computational time.
Keywords: Dynamic cellular facility layout; Electrical energy consumption (EEC); Cellular manufacturing systems (CMS); Inter/intra cell; Sustainable; Simulated annealing (SA) (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://link.springer.com/10.1007/s10479-019-03340-w Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:annopr:v:290:y:2020:i:1:d:10.1007_s10479-019-03340-w
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10479
DOI: 10.1007/s10479-019-03340-w
Access Statistics for this article
Annals of Operations Research is currently edited by Endre Boros
More articles in Annals of Operations Research from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().