EconPapers    
Economics at your fingertips  
 

On the modelling and performance measurement of service networks with heterogeneous customers

Ryan Palmer () and Martin Utley
Additional contact information
Ryan Palmer: UCL
Martin Utley: UCL

Annals of Operations Research, 2020, vol. 293, issue 1, No 12, 237-268

Abstract: Abstract Service networks are common throughout the modern world, yet understanding how their individual services effect each other and contribute to overall system performance can be difficult. An important metric in these systems is the quality of service. This is an often overlooked measure when modelling and relates to how customers are affected by a service. Presented is a novel perspective for evaluating the performance of multi-class queueing networks through a combination of operational performance and service quality—denoted the “flow of outcomes”. Here, quality is quantified by customers moving between or remaining in classes as a result of receiving service or lacking service. Importantly, each class may have different flow parameters, hence the positive/negative impact of service quality on the system’s operational performance is captured. A fluid–diffusion approximation for networks of stochastic queues is used since it allows for several complex flow dynamics: the sequential use of multiple services; abandonment and possible rejoin; reuse of the same service; multiple customers classes; and, class and time dependent parameters. The scalability of the approach is a significant benefit since, the modelled systems may be relatively large, and the included flow dynamics may render the system analytically intractable or computationally burdensome. Under the right conditions, this method provides a framework for quickly modelling large time-dependent systems. This combination of computational speed and the “flow of outcomes” provides new avenues for the analysis of multi-class service networks where both service quality and operational efficiency interact.

Keywords: Queueing; Multi-class networks; System performance; Fluid and diffusion approximation; Flow of outcomes (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://link.springer.com/10.1007/s10479-019-03391-z Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:annopr:v:293:y:2020:i:1:d:10.1007_s10479-019-03391-z

Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10479

DOI: 10.1007/s10479-019-03391-z

Access Statistics for this article

Annals of Operations Research is currently edited by Endre Boros

More articles in Annals of Operations Research from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:annopr:v:293:y:2020:i:1:d:10.1007_s10479-019-03391-z