Mutual relevance of investor sentiment and finance by modeling coupled stochastic systems with MARS
Betül Kalaycı (),
Ayşe Özmen and
Gerhard-Wilhelm Weber
Additional contact information
Betül Kalaycı: Middle East Technical University
Ayşe Özmen: Middle East Technical University
Gerhard-Wilhelm Weber: Middle East Technical University
Annals of Operations Research, 2020, vol. 295, issue 1, No 9, 183-206
Abstract:
Abstract Stochastic differential equations (SDEs) rapidly become one of the most well-known formats in which to express such diverse mathematical models under uncertainty such as financial models, neural systems, behavioral and neural responses, human reactions and behaviors. They belong to the main methods to describe randomness of a dynamical model today. In a financial system, different kinds of SDEs have been elaborated to model various financial assets. On the other hand, economists have conducted research on several empirical phenomena regarding the behaviour of individual investors, such as how their emotions and opinions influence their decisions. All those emotions and opinions are described by the word Sentiment. In finance, stochastic changes might occur according to investors’ sentiment levels. In our study, we aim to represent the mutual effects between some financial process and investors’ sentiment with constructing a coupled system of non-autonomous SDEs, evolving in time. These equations are hard to assess and solve. Therefore, we express them in a simplified manner by discretization and Multivariate Adaptive Regression Splines (MARS) model. MARS is a strong method for flexible regression and classification with interactive variables. Hereby, we treat time as another spatial variable. Eventually, we present a modern application with real-world data. This study finishes with a conclusion and an outlook towards future studies.
Keywords: Stochastic differential equations; Parameter estimation; Economics; Neurofinance; Behavioral finance; Investor sentiment; MARS (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)
Downloads: (external link)
http://link.springer.com/10.1007/s10479-020-03757-8 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:annopr:v:295:y:2020:i:1:d:10.1007_s10479-020-03757-8
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10479
DOI: 10.1007/s10479-020-03757-8
Access Statistics for this article
Annals of Operations Research is currently edited by Endre Boros
More articles in Annals of Operations Research from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().