Joint sentence and aspect-level sentiment analysis of product comments
Long Mai () and
Bac Le ()
Additional contact information
Long Mai: University of Science
Bac Le: University of Science
Annals of Operations Research, 2021, vol. 300, issue 2, No 9, 493-513
Abstract:
Abstract Comments from social media platforms (such as YouTube) have become a valuable resource for manufacturers to examine public opinion toward their products. Accordingly, we propose a novel framework for automatically collecting, filtering, and analyzing comments from YouTube for a given product. First, we devise a classification scheme to select relevant and high-quality comments from retrieval results. These comments are then analyzed in a sentiment analysis, where we introduce a joint approach to perform a combined sentence and aspect level sentiment analysis. Hence, we can achieve the following: (1) capture the mutual benefits between these two tasks, and (2) leverage knowledge learned from solving one task to solve another. Experiment results on our dataset show that the joint model achieves a satisfactory performance and outperforms the separate one on both sentence and aspect levels. Our framework does not require feature engineering efforts or external linguistic resources; therefore, it can be adapted for many languages without difficulties.
Keywords: YouTube; Sentiment analysis; Deep learning; Multitask learning; Neural networks (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://link.springer.com/10.1007/s10479-020-03534-7 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:annopr:v:300:y:2021:i:2:d:10.1007_s10479-020-03534-7
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10479
DOI: 10.1007/s10479-020-03534-7
Access Statistics for this article
Annals of Operations Research is currently edited by Endre Boros
More articles in Annals of Operations Research from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().