Impact of artificial intelligence adoption on online returns policies
Guangyong Yang (),
Guojun Ji () and
Kim Hua Tan ()
Additional contact information
Guangyong Yang: Xiamen University
Guojun Ji: Xiamen University
Kim Hua Tan: Nottingham University Business School
Annals of Operations Research, 2022, vol. 308, issue 1, No 26, 703-726
Abstract:
Abstract The shift to e-commerce has led to an astonishing increase in online sales for retailers. However, the number of returns made on online purchases is also increasing and have a profound impact on retailers’ operations and profit. Hence, retailers need to balance between minimizing and allowing product returns. This study examines an offline showroom versus an artificial intelligence (AI) online virtual-reality webroom and how the settings affect customers’ purchase and retailers’ return decisions. A case study is used to illustrate the AI application. Our results show that adopting artificial intelligence helps sellers to make better returns policies, maximize reselling returns, and reduce the risks of leftovers and shortages. Our findings unlock the potential of artificial intelligence applications in retail operations and should interest practitioners and researchers in online retailing, especially those concerned with online returns policies and the consumer personalized service experience.
Keywords: Artificial intelligence; Returns policies; Offline showroom; Fit; Exchange (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://link.springer.com/10.1007/s10479-020-03602-y Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:annopr:v:308:y:2022:i:1:d:10.1007_s10479-020-03602-y
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10479
DOI: 10.1007/s10479-020-03602-y
Access Statistics for this article
Annals of Operations Research is currently edited by Endre Boros
More articles in Annals of Operations Research from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().