EconPapers    
Economics at your fingertips  
 

Artificial intelligence in healthcare operations to enhance treatment outcomes: a framework to predict lung cancer prognosis

Marina Johnson, Abdullah Albizri () and Serhat Simsek
Additional contact information
Marina Johnson: Montclair State University
Abdullah Albizri: Montclair State University
Serhat Simsek: Montclair State University

Annals of Operations Research, 2022, vol. 308, issue 1, No 10, 275-305

Abstract: Abstract Artificial Intelligence (AI) is critical for data-driven decision making to increase resource utilization, operational performance, and service quality in various industry domains, particularly in healthcare. Using AI in healthcare operations can significantly improve treatment outcomes and enhance patient satisfaction while reducing costs. In this paper, we propose a multi-stage framework to build an AI-based decision support tool that can predict the 5-year survivability of lung cancer patients. We evaluate the proposed framework using the Surveillance, Epidemiology, and End Results dataset pertaining to the 1973–2015 period obtained from the National Institutes of Health. The first stage entails data preprocessing and target creation. The second stage applies six AI algorithms with feature selection through Particle Swarm Optimization and hyperparameter tuning with Cross-Validation. These Algorithms include Logistic Regression, Decision Trees, Random Forests (RF), Adaptive Boosting (AdaBoost), Artificial Neural Network, and Naïve Bayes. The results show that RF and AdaBoost models yield an AUC rate of 0.94 and outperform the other models. Stage 3 utilizes permutation importance to interpret the RF and AdaBoost models and applies Tree-based Augmented Naïve Bayes to gain insights regarding the interrelations among important features. The results of Stage 3 delineate that the number of lymph nodes containing metastases), the number of tumors that patients have had in their lifetime, the patient’s age, and the microscopic composition of cells rank among the topmost important features and can significantly impact patient survivability. We think this study has significant practical implications in helping physicians predict prognosis and develop treatment plans for lung cancer patients.

Keywords: Artificial intelligence; Machine learning; Healthcare operations; Cancer survival prediction; Healthcare analytics (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://link.springer.com/10.1007/s10479-020-03872-6 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:annopr:v:308:y:2022:i:1:d:10.1007_s10479-020-03872-6

Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10479

DOI: 10.1007/s10479-020-03872-6

Access Statistics for this article

Annals of Operations Research is currently edited by Endre Boros

More articles in Annals of Operations Research from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:annopr:v:308:y:2022:i:1:d:10.1007_s10479-020-03872-6