EconPapers    
Economics at your fingertips  
 

Real estate price estimation in French cities using geocoding and machine learning

Dieudonné Tchuente () and Serge Nyawa ()
Additional contact information
Dieudonné Tchuente: Toulouse Business School
Serge Nyawa: Toulouse Business School

Annals of Operations Research, 2022, vol. 308, issue 1, No 21, 608 pages

Abstract: Abstract This paper reviews real estate price estimation in France, a market that has received little attention. We compare seven popular machine learning techniques by proposing a different approach that quantifies the relevance of location features in real estate price estimation with high and fine levels of granularity. We take advantage of a newly available open dataset provided by the French government that contains 5 years of historical data of real estate transactions. At a high level of granularity, we obtain important differences regarding the models’ prediction powers between cities with medium and high standards of living (precision differences beyond 70% in some cases). At a low level of granularity, we use geocoding to add precise geographical location features to the machine learning algorithm inputs. We obtain important improvements regarding the models’ forecasting powers relative to models trained without these features (improvements beyond 50% for some forecasting error measures). Our results also reveal that neural networks and random forest techniques particularly outperform other methods when geocoding features are not accounted for, while random forest, adaboost and gradient boosting perform well when geocoding features are considered. For identifying opportunities in the real estate market through real estate price prediction, our results can be of particular interest. They can also serve as a basis for price assessment in revenue management for durable and non-replenishable products such as real estate.

Keywords: Real estate market; Automated valuation models; Investment; Geocoding; French cities; Machine learning; Artificial intelligence (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://link.springer.com/10.1007/s10479-021-03932-5 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:annopr:v:308:y:2022:i:1:d:10.1007_s10479-021-03932-5

Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10479

DOI: 10.1007/s10479-021-03932-5

Access Statistics for this article

Annals of Operations Research is currently edited by Endre Boros

More articles in Annals of Operations Research from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:annopr:v:308:y:2022:i:1:d:10.1007_s10479-021-03932-5