Artificial intelligence-based inventory management: a Monte Carlo tree search approach
Deniz Preil () and
Michael Krapp
Additional contact information
Deniz Preil: University of Augsburg
Michael Krapp: University of Augsburg
Annals of Operations Research, 2022, vol. 308, issue 1, No 16, 415-439
Abstract:
Abstract The coordination of order policies constitutes a great challenge in supply chain inventory management as various stochastic factors increase its complexity. Therefore, analytical approaches to determine a policy that minimises overall inventory costs are only suitable to a limited extent. In contrast, we adopt a heuristic approach, from the domain of artificial intelligence (AI), namely, Monte Carlo tree search (MCTS). To the best of our knowledge, MCTS has neither been applied to supply chain inventory management before nor is it yet widely disseminated in other branches of operations research. We develop an offline model as well as an online model which bases decisions on real-time data. For demonstration purposes, we consider a supply chain structure similar to the classical beer game with four actors and both stochastic demand and lead times. We demonstrate that both the offline and the online MCTS models perform better than other previously adopted AI-based approaches. Furthermore, we provide evidence that a dynamic order policy determined by MCTS eliminates the bullwhip effect.
Keywords: Monte Carlo tree search; Supply chain inventory management; Artificial intelligence; Bullwhip effect (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://link.springer.com/10.1007/s10479-021-03935-2 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:annopr:v:308:y:2022:i:1:d:10.1007_s10479-021-03935-2
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10479
DOI: 10.1007/s10479-021-03935-2
Access Statistics for this article
Annals of Operations Research is currently edited by Endre Boros
More articles in Annals of Operations Research from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().