EconPapers    
Economics at your fingertips  
 

Stage-t scenario dominance for risk-averse multi-stage stochastic mixed-integer programs

İ. Esra Büyüktahtakın ()
Additional contact information
İ. Esra Büyüktahtakın: New Jersey Institute of Technology

Annals of Operations Research, 2022, vol. 309, issue 1, No 1, 35 pages

Abstract: Abstract This paper presents a new and general approach, named “Stage-t Scenario Dominance,” to solve the risk-averse multi-stage stochastic mixed-integer programs (M-SMIPs). Given a monotonic objective function, our method derives a partial ordering of scenarios by pairwise comparing the realization of uncertain parameters at each time stage under each scenario. Specifically, we derive bounds and implications from the “Stage-t Scenario Dominance” by using the partial ordering of scenarios and solving a subset of individual scenario sub-problems up to stage t. Using these inferences, we generate new cutting planes to tackle the computational difficulty of risk-averse M-SMIPs. We also derive results on the minimum number of scenario-dominance relations generated. We demonstrate the use of this methodology on a stochastic version of the mean-conditional value-at-risk (CVaR) dynamic knapsack problem. Our computational experiments address those instances that have uncertainty, which correspond to the objective, left-hand side, and right-hand side parameters. Computational results show that our “scenario dominance"-based method can reduce the solution time for mean-risk, stochastic, multi-stage, and multi-dimensional knapsack problems with both integer and continuous variables, whose structure is similar to the mean-risk M-SMIPs, with varying risk characteristics by one-to-two orders of magnitude for varying numbers of random variables in each stage. Computational results also demonstrate that strong dominance cuts perform well for those instances with ten random variables in each stage, and ninety random variables in total. The proposed scenario dominance framework is general and can be applied to a wide range of risk-averse and risk-neutral M-SMIP problems.

Keywords: Stage-t scenario dominance; Partial ordering of scenarios; Time-consistent mean-risk multi-stage stochastic mixed-integer programs; Risk-averse; Conditional value-at-risk (CVaR); Stochastic dynamic knapsack problem; Cutting planes; Bounds (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s10479-021-04388-3 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:annopr:v:309:y:2022:i:1:d:10.1007_s10479-021-04388-3

Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10479

DOI: 10.1007/s10479-021-04388-3

Access Statistics for this article

Annals of Operations Research is currently edited by Endre Boros

More articles in Annals of Operations Research from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:annopr:v:309:y:2022:i:1:d:10.1007_s10479-021-04388-3