EconPapers    
Economics at your fingertips  
 

Multiple criteria ranking method based on functional proximity index: un-weighted TOPSIS

V. Liern and B. Pérez-Gladish ()
Additional contact information
V. Liern: University of Valencia
B. Pérez-Gladish: University of Oviedo

Annals of Operations Research, 2022, vol. 311, issue 2, No 24, 1099-1121

Abstract: Abstract The technique for order preference by similarity to ideal solution (TOPSIS) is a widely used ranking method which provides a composite index representing the relative proximity of each decision alternative to an ideal solution. The relative proximity index construction relays on the use of a single criterion aggregation approach. Its output, regardless the certainty or uncertainty nature of the problem’s data, is usually a real number. In TOPSIS classical approach alternatives are ordered based on these numbers. The closer the number to 1, the higher the position of the alternative in the ranking. However, although the relative proximity index can be highly sensible to the weighting scheme, as far as the authors of this work know, the relative proximity index has never been treated as a function. In this work, a new TOPSIS approach is proposed in which weights are not fixed in an exact way a priori. On the contrary, they are handled as decision variables in a set of optimization problems where the objective is to maximize the relative proximity of each alternative to the ideal solution. The only possible a priori information about the weights is that related to the existence of upper and lower bounds in their values. This information is incorporated into the optimization problems as constraints. The result is a new relative proximity index which is a function depending on the values of the weights. This feature of the proposed method could be useful in some decision situations in which the determination of subjective precise weights from decision makers could be problematic.

Keywords: Weighting schemes; TOPSIS; Un-weighted TOPSIS (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://link.springer.com/10.1007/s10479-020-03718-1 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:annopr:v:311:y:2022:i:2:d:10.1007_s10479-020-03718-1

Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10479

DOI: 10.1007/s10479-020-03718-1

Access Statistics for this article

Annals of Operations Research is currently edited by Endre Boros

More articles in Annals of Operations Research from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:annopr:v:311:y:2022:i:2:d:10.1007_s10479-020-03718-1