Multi-objective optimisation for constructing cyclic appointment schedules for elective and urgent patients
T. Meersman () and
B. Maenhout
Additional contact information
T. Meersman: Ghent University
B. Maenhout: Ghent University
Annals of Operations Research, 2022, vol. 312, issue 2, No 11, 909-948
Abstract:
Abstract In this paper, we study the construction of a cyclic appointment schedule in an outpatient department. In particular, we determine the capacity distribution between elective and urgent patients and the scheduling of the time slots reserved for these patients such that the operational waiting times of elective and urgent patients are minimised. The proposed solution methodology devises a Pareto set of cyclic appointment schedules based on these waiting times with different capacity allocations for urgent patients. An approximation of the Pareto set of non-dominated schedules is obtained using a multi-objective archived simulated annealing heuristic. To accurately validate the cyclic appointment schedules, we incorporate operational decision-making via scheduling individual patients. To this end, we simulate operational variability, i.e., patient arrivals, no-show behaviour, punctuality and scan durations, based on real-life input data. The patients are assigned one-by-one using an online scheduling rule. Computational experiments are conducted with a real-life case study. We compare different appointment scheduling rules and discuss the impact of the capacity distribution between elective and urgent patients and the timing of urgent slots in the cyclic appointment schedules. The results show that the distribution of capacity between patient types, the timing of urgent slots and appointment rules all have significant impacts on patient waiting times. Appointment waiting times improve when urgent slots are spread equally over and throughout the days considered and when the Bailey–Welch rule is used to schedule patients. Trade-offs between elective and urgent waiting times resulting from different capacity distributions or slot timing are exemplified via a Pareto front. The proposed method outperforms relevant single-pass methodologies, and we demonstrate that its performance is strengthened thanks to the integrated optimisation of strategic, tactical and operational decisions.
Keywords: Cyclic appointment scheduling; Outpatient department; Urgent patients; Multi-objective simulated annealing; Simulation (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s10479-022-04628-0 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:annopr:v:312:y:2022:i:2:d:10.1007_s10479-022-04628-0
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10479
DOI: 10.1007/s10479-022-04628-0
Access Statistics for this article
Annals of Operations Research is currently edited by Endre Boros
More articles in Annals of Operations Research from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().