Surgical scheduling by Fuzzy model considering inpatient beds shortage under uncertain surgery durations
Jian-Jun Wang (),
Zongli Dai (),
Ai-Chih Chang and
Jim Junmin Shi ()
Additional contact information
Jian-Jun Wang: Dalian University of Technology
Zongli Dai: Dalian University of Technology
Ai-Chih Chang: New Jersey Institute of Technology
Jim Junmin Shi: New Jersey Institute of Technology
Annals of Operations Research, 2022, vol. 315, issue 1, No 18, 463-505
Abstract:
Abstract Operating Room (OR) management has been among the mainstream of hospital management research, as ORs are commonly considered as one of the most critical and expensive resources. The complicated connection and interplay between ORs and their upstream and downstream units has recently attracted research attention to focus more on allocating medical resources efficiently for the sake of a balanced coordination. As a critical step, surgical scheduling in the presence of uncertain surgery durations is pivotal but rather challenging since a patient cannot be hospitalized if a recovery bed will not be available to accommodate the admission. To tackle the challenge, we propose an overflow strategy that allows patients to be assigned to an undesignated department if the designated one is full. It has been proved that overflow strategy can successfully alleviate the imbalance of capacity utilization. However, some studies indicate that implementation of the overflow strategy exacerbates the readmission rate as well as the length of stay (LOS). To rigorously examine the overflow strategy and explore its optimal solution, we propose a Fuzzy model for surgical scheduling by explicitly considering downstream shortage, as well as the uncertainty of surgery duration and patient LOS. To solve the Fuzzy model, a hybrid algorithm (so-called GA-P) is developed, stemming from Genetic Algorithm (GA). Extensive numerical results demonstrate the plausible efficiency of the GA-P algorithm, especially for large-scale scheduling problems (e.g., comprehensive hospitals). Additionally, it is shown that the overflow cost plays a critical role in determining the efficiency of the overflow strategy; viz., benefits from the overflow strategy can be reduced as the overflow cost increases, and eventually almost vanishes when the cost becomes sufficiently large. Finally, the Fuzzy model is tested to be effective in terms of simplicity and reliability, yet without cannibalizing the patient admission rate.
Keywords: Surgical scheduling; Inpatient bed; Operating room; Uncertain environment; Fuzzy model (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://link.springer.com/10.1007/s10479-022-04645-z Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:annopr:v:315:y:2022:i:1:d:10.1007_s10479-022-04645-z
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10479
DOI: 10.1007/s10479-022-04645-z
Access Statistics for this article
Annals of Operations Research is currently edited by Endre Boros
More articles in Annals of Operations Research from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().