Data envelopment analysis in hierarchical category structure with fuzzy boundaries
Utsav Pandey () and
Sanjeet Singh ()
Additional contact information
Utsav Pandey: Indian Institute of Management Calcutta
Sanjeet Singh: Indian Institute of Management Lucknow
Annals of Operations Research, 2022, vol. 315, issue 2, No 35, 1517-1549
Abstract:
Abstract Data envelopment analysis (DEA) is used for the performance evaluation of a set of decision making units (DMUs). Such performance scores are necessary for taking managerial decisions like allocation of resources, improvement plans for the poor performers, and maintaining high efficiency of the leaders. In classical DEA, it is assumed that the DMUs are operating in a similar environment. But in practice, this assumption is normally broken as DMUs operate in a varied environment due to several uncontrollable factors like socio-economic differences, competitiveness in the region and location. In order to address this issue, categorical DEA was proposed for the construction of peer groups by creating crisp categories based on the level of competitiveness. However, such categorizations suffer from indeterminate factors, for example, human judgment and biases, linguistic ambiguity and vagueness. In this paper, we propose a more realistic DEA approach which is capable of handling categories defined in natural languages or with vague boundaries and generates efficiency as triangular fuzzy number. The analysis indicates that if a higher degree of fuzziness is allowed while defining the boundaries of the reference set, it results in (1) a compromise with the accuracy, signified by the spread of the fuzzy efficiency, (2) degradation of the quality, signified by the centre of the fuzzy efficiency, of the decision. Finally, the applicability of this approach has been demonstrated using public library data for different regions in Tokyo city. The sensitivity of the optimal decisions to the changes in fuzzy parameters has also been investigated.
Keywords: DEA; Categorical DMU; Fuzzy DEA; Fuzzy category (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10479-020-03854-8 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:annopr:v:315:y:2022:i:2:d:10.1007_s10479-020-03854-8
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10479
DOI: 10.1007/s10479-020-03854-8
Access Statistics for this article
Annals of Operations Research is currently edited by Endre Boros
More articles in Annals of Operations Research from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().