EconPapers    
Economics at your fingertips  
 

Pareto solutions as limits of collective traps: an inexact multiobjective proximal point algorithm

G. C. Bento (), J. X. Cruz Neto (), L. V. Meireles () and Antoine Soubeyran
Additional contact information
G. C. Bento: Universidade Federal de Goiás
J. X. Cruz Neto: Universidade Federal do Piauí
L. V. Meireles: Instituto Federal Goiano

Annals of Operations Research, 2022, vol. 316, issue 2, No 31, 1425-1443

Abstract: Abstract In this paper we introduce a definition of approximate Pareto efficient solution as well as a necessary condition for such solutions in the multiobjective setting on Riemannian manifolds. We also propose an inexact proximal point method for nonsmooth multiobjective optimization in the Riemannian context by using the notion of approximate solution. The main convergence result ensures that each cluster point (if any) of any sequence generated by the method is a Pareto critical point. Furthermore, when the problem is convex on a Hadamard manifold, full convergence of the method for a weak Pareto efficient solution is obtained. As an application, we show how a Pareto critical point can be reached as a limit of traps in the context of the variational rationality approach of stay and change human dynamics.

Keywords: Multiobjective proximal method; Riemannian manifold; Approximate solution; Variational rationality; Worthwhile move; Trap; 90C29; 90C30; 49M30 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s10479-022-04719-y Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
Working Paper: Pareto solutions as limits of collective traps: an inexact multiobjective proximal point algorithm (2022) Downloads
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:annopr:v:316:y:2022:i:2:d:10.1007_s10479-022-04719-y

Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10479

DOI: 10.1007/s10479-022-04719-y

Access Statistics for this article

Annals of Operations Research is currently edited by Endre Boros

More articles in Annals of Operations Research from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-22
Handle: RePEc:spr:annopr:v:316:y:2022:i:2:d:10.1007_s10479-022-04719-y