Surgery scheduling of pelvic fracture patients with stochastic recovery time
Qing Li (),
Qiang Su and
Chao Xu
Additional contact information
Qing Li: Shanghai University of Political Science and Law
Qiang Su: Tongji University
Chao Xu: Xi’an University of Posts and Telecommunications
Annals of Operations Research, 2022, vol. 318, issue 1, No 10, 277-321
Abstract:
Abstract Pelvic fracture is a severe trauma and is often seen in the traffic accidents, which are associated with complications or multiple injuries. Surgery is the main treatment for patients with serious conditions, while conservative treatment is adopted for older or minor-illness patients. Surgery resources, such as doctors, nurses, and operating rooms, are shared by all pelvic fracture patients. From the perspective of patient state, this paper divides patients who require surgery into two types, convalescent patients and scheduled patients. Convalescent patients’ life states are always unstable, and they require recovery time to meet the condition of surgery. The recovery time is usually stochastic due to different patient situations. Scheduled patients have stable life states, and the pelvic fracture surgical plan is scheduled days or weeks in advance. Considering the characteristics of the two types of patients, a finite-horizon Markov decision process (MDP) model is established. With data collected from the hospital, parameters are set and experiments are designed to reveal the dynamic priority rules for receiving patients into surgery. Performances of different scenarios are compared, and the optimal policies obtained from the MDP are analyzed.
Keywords: Scheduling controls; Markov decision process; Pelvic fracture; Recovery time (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10479-022-04850-w Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:annopr:v:318:y:2022:i:1:d:10.1007_s10479-022-04850-w
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10479
DOI: 10.1007/s10479-022-04850-w
Access Statistics for this article
Annals of Operations Research is currently edited by Endre Boros
More articles in Annals of Operations Research from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().