EconPapers    
Economics at your fingertips  
 

Big data analytics in sustainable humanitarian supply chain: barriers and their interactions

Surajit Bag (), Shivam Gupta () and Lincoln Wood ()
Additional contact information
Surajit Bag: University of Johannesburg
Shivam Gupta: NEOMA Business School
Lincoln Wood: University of Otago

Annals of Operations Research, 2022, vol. 319, issue 1, No 23, 760 pages

Abstract: Abstract Big data analytics research in humanitarian supply chain management has gained popularity for its ability to manage risks. While big data analytics can predict future events, it can also concentrate on current events and support preparation for future events. Big data analytics-driven approaches in humanitarian supply chain management are complicated due to the presence of multiple barriers. The current study aims to identify the leading barriers; further categorize them and finally develop the contextual interrelationships using the Fuzzy Total Interpretive Structural Modeling (TISM) approach. Sustainable humanitarian supply chain management research is in nascent stage and therefore, Fuzzy TISM is used in this study for theory building purpose and answering three key questions-what, how and why. Fuzzy TISM shows some key transitive links which provides enhanced explanatory framework. The TISM model shows that the fifteen barriers achieved eight levels and decision-makers must aim to remove the foundational barriers to apply big data analytics in sustainable humanitarian supply chain management. Fuzzy TISM were synthesized to develop a conceptual model and this was statistically validated considering a sample of 108 responses from African based humanitarian organizations. Findings suggest that organizational focus is required on implementing modern management practices; second, more emphasis is required on infrastructure development and lastly, improvement is required on quality of information sharing as these variables can influence sustainable humanitarian supply chain management. Finally, the conclusions and future research directions were outlined which may help stakeholders in sustainable humanitarian supply chain management to eliminate the BDA barriers.

Keywords: Barriers; Big data analytics; Fuzzy total interpretive structural modeling; Humanitarian supply chain management; Sustainability (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://link.springer.com/10.1007/s10479-020-03790-7 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:annopr:v:319:y:2022:i:1:d:10.1007_s10479-020-03790-7

Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10479

DOI: 10.1007/s10479-020-03790-7

Access Statistics for this article

Annals of Operations Research is currently edited by Endre Boros

More articles in Annals of Operations Research from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:annopr:v:319:y:2022:i:1:d:10.1007_s10479-020-03790-7